Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Phenyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole

Weibing Wu^a* and Jinan Tang^b

^aJiangsu Provincial Key Laboratory of Pulp & Paper Science & Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: wbwu@yahoo.cn

Received 28 June 2011; accepted 29 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.093; wR factor = 0.242; data-to-parameter ratio = 19.2.

In the title compound, $C_{30}H_{35}B_2NO_4$, the carbazole skeleton is essentially planar (r.m.s. deviation for all non-H atoms = 0.035 Å), and is oriented at a dihedral angle of $65.0 (3)^\circ$ with respect to the adjacent phenyl ring.

Related literature

The title compound is an intermediate in the synthesis of 9phenylcarbazole-based optical materials, see: Oliveira et al. (2005). For the synthesis of the title compound, see: Wong et al. (2005, 2006); Rashidnadimi et al. (2008). For related structures, see: Xu et al. (2010); Cui et al. (2009); Saeed et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

$C_{30}H_{35}B_2NO_4$
$M_r = 495.21$
Orthorhombic, Pbca
a = 13.974 (6) Å
b = 11.935 (5) Å
c = 34.494 (14) Å

Data collection

Rigaku Mercury2 diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\min} = 0.9, T_{\max} = 1$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.093$ wR(F²) = 0.242 S = 1.166553 reflections 342 parameters

V = 5753 (4) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K $0.3 \times 0.2 \times 0.1 \text{ mm}$

49645 measured reflections 6553 independent reflections 5170 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.062$

15 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.72 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.52$ e Å⁻³

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 30972321) and the Basic Research Project of the Natural Science Foundation of Jiangsu Provincial Universities (10KJB53007).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2305).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o215.
- Oliveira, M. M., Salvador, M. A., Coelho, P. J. & Carvalho, L. M. (2005). Tetrahedron, 61, 1681-1691.
- Rashidnadimi, S., Hung, T. H., Wong, K.-T. & Bard, A. J. (2008). J. Am. Chem. Soc. 130, 634-639.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Saeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Wong, K.-T., Chao, T.-C., Chi, L.-C., Chu, Y.-Y., Balaiah, A., Chiu, S.-F., Liu, Y.-H. & Wang, Y. (2006). Org. Lett. 8, 5033-5036.
- Wong, K.-T., Hung, T.-H., Chao, T.-C. & Ho, T.-I. (2005). Tetrahedron Lett. 46, 855-858
- Xu, G.-Y., Geng, W.-Q. & Zhou, H.-P. (2010). Acta Cryst. E66, 0571.

Acta Cryst. (2011). E67, o1919 [doi:10.1107/S1600536811025645]

9-Phenyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole

W. Wu and J. Tang

Comment

Carbazole - based materials have been investigated for their electrical and optical properties. Especially, introduction of substituents on the 3, 6-positions of carbazole represents a possible approach for designing carbazole-based materials with electrogenerated chemiluminescence. The title compound is a key intermediates, which can be used to synthesize 9-phenyl-carbazole derivatives with substituents at 3, 6-positions (Wong *et al.*, 2005, 2006; Rashidnadimi *et al.*, 2008).

The central structural element of the title compound is a carbazole moiety substituted with two pinacolbronic ester at 3, 6-positions and a phenyl attached to atom N9. The carbazole moiety is essentially planar (maximum deviation=0.057 Å). The carbazole plane is inclined to the phenyl ring planes at dihedral angle of 115.0 (3)°. The C—B distances fall in the range to 1.550 (4) Å, consistent with the literature (Allen *et al.*, 1987). The crystal packing is stabilized by van der Waals forces.

Experimental

To a solution of 5,8-dibromo-1-phenylcarbazole (400 mg, 1 mmol) in THF (15 ml) at -78°C was added 1.87 ml (3 mmol) of *n*-butyllithium (1.6 *M* in hexane). The mixture was stirred at -78°C for 2 h. 0.4 ml (2 mmol) of 2-isopropoxy-4,4,5,5-tet-ramethyl-[1,3,2]-dioxaborolane was added rapidly to the solution, and the resulting mixture was warmed to room temper-ature and stirred for 8 h. The mixture was poured into water and extracted with dichloromethane. The organic extracts were washed with brine and dried over magnesium sulfate. The solvent was removed by rotary evaporation, and recrystallization was made in a mixture of *n*-pentane/hexane to afford 356 mg (72%) of product as a whitesolid. The structure was confirmed by FTIR, ¹H NMR and MS. Single crystals suitable for crystallographic analysis were obtained by slow evaporation of a ethanol/dichloromethane (1:1v/v) solution.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å(methyl) and C—H = 0.93 Å (aromatic) with Uiso~(H) = 1.2U~eq~(aromatic) and Uiso~(H) = 1.5U~eq~(methyl).

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

9-Phenyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H- carbazole

 $D_{\rm x} = 1.143 {\rm Mg m}^{-3}$

Melting point: 476 K

 $\theta = 2.1 - 27.5^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K

Block, colourless

 $0.3 \times 0.2 \times 0.1 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 10558 reflections

Crystal data

C30H35B2NO4 $M_r = 495.21$ Orthorhombic, Pbca Hall symbol: -P 2ac 2ab *a* = 13.974 (6) Å *b* = 11.935 (5) Å *c* = 34.494 (14) Å V = 5753 (4) Å³ Z = 8F(000) = 2112

Data collection

Rigaku Mercury2 diffractometer	6553 independent reflections
Radiation source: fine-focus sealed tube	5170 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.062$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -15 \rightarrow 15$
$T_{\min} = 0.9, \ T_{\max} = 1$	$l = -44 \rightarrow 44$
49645 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.093$	H-atom parameters constrained
$wR(F^2) = 0.242$	$w = 1/[\sigma^2(F_o^2) + (0.0908P)^2 + 3.0388P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} < 0.001$
6553 reflections	$\Delta \rho_{max} = 0.72 \text{ e} \text{ Å}^{-3}$
342 parameters	$\Delta \rho_{\rm min} = -0.52 \ e \ {\rm \AA}^{-3}$
15 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0056 (14) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.14754 (13)	0.80983 (19)	0.06118 (6)	0.0611 (6)
O2	0.16305 (13)	0.7395 (2)	0.12237 (6)	0.0644 (6)
C3	0.47750 (18)	0.7413 (2)	0.11098 (7)	0.0454 (6)
N1	0.61593 (15)	0.8121 (2)	0.08578 (6)	0.0517 (6)
C5	0.64049 (18)	0.7510 (2)	0.11878 (7)	0.0475 (6)
C6	0.51688 (17)	0.8061 (2)	0.08084 (7)	0.0461 (6)
C7	0.68001 (18)	0.8756 (2)	0.06208 (7)	0.0465 (6)
C8	0.31920 (18)	0.7794 (2)	0.08579 (8)	0.0506 (6)
C9	0.6547 (2)	0.6093 (3)	0.18283 (8)	0.0533 (7)
C10	0.56499 (19)	0.6321 (2)	0.16660 (7)	0.0499 (6)
H10A	0.5105	0.5994	0.1771	0.060*
C11	0.36216 (19)	0.8401 (3)	0.05558 (8)	0.0562 (7)
H11A	0.3230	0.8716	0.0367	0.067*
C12	0.55668 (17)	0.7033 (2)	0.13485 (7)	0.0448 (6)
C13	0.37813 (18)	0.7292 (2)	0.11331 (8)	0.0491 (6)
H13A	0.3513	0.6874	0.1333	0.059*
C14	0.7359 (2)	0.6605 (3)	0.16612 (8)	0.0607 (7)
H14A	0.7956	0.6463	0.1769	0.073*
C15	0.7300 (2)	0.9648 (3)	0.07770 (9)	0.0603 (7)
H15A	0.7232	0.9829	0.1038	0.072*
C16	0.73053 (19)	0.7308 (3)	0.13444 (8)	0.0587 (7)
H16A	0.7851	0.7634	0.1239	0.070*
C17	0.45997 (19)	0.8554 (2)	0.05254 (8)	0.0544 (7)
H17A	0.4865	0.8968	0.0324	0.065*
C18	0.6916 (2)	0.8491 (2)	0.02336 (8)	0.0557 (7)
H18A	0.6590	0.7885	0.0127	0.067*
C19	0.05223 (19)	0.8181 (3)	0.07865 (9)	0.0611 (8)
03	0.59377 (17)	0.4625 (2)	0.23038 (7)	0.0892 (7)
C21	0.0605 (2)	0.7369 (3)	0.11389 (9)	0.0630 (8)
C22	0.7514 (2)	0.9128 (3)	0.00057 (8)	0.0645 (8)
H22A	0.7584	0.8952	-0.0255	0.077*
B1	0.2088 (2)	0.7751 (3)	0.08979 (9)	0.0516 (7)
O4	0.74200 (18)	0.5255 (2)	0.24089 (7)	0.0907 (7)

C25	0.7291 (3)	0.4402 (3)	0.27042 (9)	0.0707 (9)
B2	0.6640 (3)	0.5314 (4)	0.21859 (12)	0.0801 (8)
C27	0.8004 (2)	1.0010 (3)	0.01569 (9)	0.0668 (8)
H27A	0.8405	1.0436	0.0000	0.080*
C28	-0.0211 (2)	0.7866 (4)	0.04848 (10)	0.0865 (12)
H28A	-0.0135	0.7091	0.0417	0.130*
H28B	-0.0123	0.8322	0.0258	0.130*
H28C	-0.0842	0.7984	0.0587	0.130*
C29	0.6219 (3)	0.4071 (3)	0.26585 (8)	0.0664 (8)
C30	0.7904 (2)	1.0269 (3)	0.05424 (10)	0.0719 (9)
H30A	0.8244	1.0867	0.0647	0.086*
C31	0.0404 (3)	0.9398 (3)	0.09067 (14)	0.0974 (13)
H31A	0.0437	0.9869	0.0681	0.146*
H31B	0.0905	0.9599	0.1084	0.146*
H31C	-0.0205	0.9495	0.1031	0.146*
C32	0.0087 (3)	0.7720 (5)	0.15013 (10)	0.1018 (15)
H32A	0.0196	0.7176	0.1702	0.153*
H32B	-0.0587	0.7770	0.1449	0.153*
H32C	0.0320	0.8437	0.1585	0.153*
C33	0.7992 (4)	0.3483 (5)	0.26240 (19)	0.142 (2)
H33A	0.8631	0.3775	0.2638	0.212*
H33B	0.7880	0.3184	0.2370	0.212*
H33C	0.7916	0.2899	0.2813	0.212*
C34	0.5556 (4)	0.4521 (6)	0.29700 (15)	0.155 (3)
H34A	0.5692	0.5298	0.3014	0.232*
H34B	0.5651	0.4108	0.3206	0.232*
H34C	0.4904	0.4440	0.2887	0.232*
C35	0.0369 (3)	0.6160 (4)	0.10317 (14)	0.1071 (15)
H35A	0.0581	0.5669	0.1235	0.161*
H35B	0.0688	0.5967	0.0794	0.161*
H35C	-0.0309	0.6082	0.0998	0.161*
C36	0.6025 (4)	0.2839 (4)	0.26109 (18)	0.1287 (19)
H36A	0.5353	0.2724	0.2569	0.193*
H36B	0.6219	0.2448	0.2841	0.193*
H36C	0.6377	0.2558	0.2393	0.193*
C37	0.7538 (4)	0.4952 (5)	0.30874 (14)	0.135 (2)
H37A	0.7156	0.5613	0.3121	0.202*
H37B	0.8203	0.5152	0.3089	0.202*
H37C	0.7411	0.4439	0.3295	0.202*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0418 (10)	0.0836 (14)	0.0579 (11)	0.0092 (9)	-0.0044 (8)	0.0047 (10)
O2	0.0427 (10)	0.0916 (16)	0.0588 (12)	0.0036 (10)	-0.0048 (8)	0.0047 (11)
C3	0.0420 (13)	0.0488 (14)	0.0454 (12)	0.0058 (11)	-0.0023 (10)	-0.0002 (10)
N1	0.0401 (11)	0.0684 (15)	0.0465 (11)	-0.0006 (10)	-0.0049 (9)	0.0088 (10)
C5	0.0423 (13)	0.0583 (15)	0.0418 (12)	0.0012 (11)	-0.0031 (10)	0.0024 (11)

C6	0.0404 (13)	0.0523 (14)	0.0455 (12)	0.0026 (11)	-0.0039 (10)	0.0000 (11)
C7	0.0415 (13)	0.0520 (14)	0.0462 (13)	0.0027 (11)	-0.0034 (10)	0.0052 (11)
C8	0.0408 (13)	0.0582 (16)	0.0528 (14)	0.0048 (11)	-0.0060 (11)	-0.0011 (12)
C9	0.0506 (15)	0.0639 (17)	0.0455 (13)	0.0036 (13)	-0.0062 (11)	0.0035 (12)
C10	0.0455 (14)	0.0585 (16)	0.0456 (13)	0.0022 (12)	-0.0009 (11)	0.0037 (11)
C11	0.0454 (14)	0.0678 (17)	0.0554 (15)	0.0095 (13)	-0.0103 (12)	0.0044 (13)
C12	0.0391 (12)	0.0517 (14)	0.0435 (12)	0.0031 (10)	-0.0028 (10)	-0.0026 (10)
C13	0.0406 (13)	0.0564 (15)	0.0502 (13)	0.0029 (11)	0.0003 (10)	0.0002 (12)
C14	0.0456 (15)	0.083 (2)	0.0539 (15)	0.0019 (14)	-0.0129 (12)	0.0097 (15)
C15	0.0638 (18)	0.0629 (18)	0.0543 (15)	-0.0040 (14)	-0.0014 (13)	-0.0069 (13)
C16	0.0425 (15)	0.082 (2)	0.0520 (14)	-0.0036 (13)	-0.0061 (11)	0.0098 (14)
C17	0.0473 (15)	0.0645 (17)	0.0514 (14)	0.0036 (12)	-0.0037 (11)	0.0093 (13)
C18	0.0602 (17)	0.0594 (16)	0.0476 (14)	-0.0033 (13)	-0.0051 (12)	-0.0003 (12)
C19	0.0394 (14)	0.080 (2)	0.0637 (17)	0.0072 (14)	-0.0045 (12)	-0.0096 (15)
03	0.0719 (13)	0.1128 (17)	0.0830 (14)	-0.0171 (11)	-0.0228 (11)	0.0454 (13)
C21	0.0415 (14)	0.087 (2)	0.0602 (16)	-0.0044 (14)	-0.0053 (12)	-0.0049 (15)
C22	0.0708 (19)	0.075 (2)	0.0473 (14)	-0.0034 (16)	0.0023 (14)	0.0065 (14)
B1	0.0449 (16)	0.0575 (18)	0.0523 (16)	0.0068 (13)	-0.0057 (13)	-0.0075 (14)
O4	0.0729 (13)	0.1150 (17)	0.0841 (14)	-0.0185 (12)	-0.0307 (11)	0.0455 (13)
C25	0.085 (2)	0.0637 (19)	0.0635 (18)	-0.0032 (16)	-0.0241 (16)	0.0160 (15)
B2	0.0655 (14)	0.1032 (17)	0.0718 (15)	-0.0136 (13)	-0.0238 (12)	0.0382 (14)
C27	0.0590 (17)	0.073 (2)	0.0681 (19)	-0.0026 (16)	0.0018 (14)	0.0218 (16)
C28	0.0530 (19)	0.132 (3)	0.074 (2)	0.008 (2)	-0.0207 (16)	-0.007 (2)
C29	0.081 (2)	0.0681 (19)	0.0498 (15)	0.0003 (16)	-0.0061 (14)	0.0114 (14)
C30	0.072 (2)	0.0597 (18)	0.084 (2)	-0.0156 (16)	-0.0073 (17)	0.0009 (16)
C31	0.078 (2)	0.083 (3)	0.131 (4)	0.026 (2)	-0.009 (2)	-0.018 (2)
C32	0.0523 (19)	0.184 (5)	0.069 (2)	0.003 (2)	0.0066 (16)	-0.007 (3)
C33	0.094 (3)	0.110 (4)	0.221 (7)	0.029 (3)	-0.006 (4)	-0.002 (4)
C34	0.122 (4)	0.234 (8)	0.107 (4)	-0.007 (5)	0.032 (3)	-0.037 (4)
C35	0.102 (3)	0.087 (3)	0.132 (4)	-0.027 (2)	-0.024 (3)	0.007 (3)
C36	0.115 (4)	0.081 (3)	0.190 (6)	-0.020 (3)	-0.015 (4)	0.004 (3)
C37	0.161 (5)	0.153 (5)	0.090 (3)	-0.037 (4)	-0.045(3)	-0.014 (3)

Geometric parameters (Å, °)

O1—B1	1.371 (4)	C21—C32	1.504 (4)
O1—C19	1.465 (3)	C21—C35	1.526 (5)
O2—B1	1.361 (4)	C22—C27	1.361 (5)
O2—C21	1.463 (3)	C22—H22A	0.9300
C3—C13	1.398 (4)	O4—B2	1.336 (4)
C3—C6	1.408 (4)	O4—C25	1.452 (4)
C3—C12	1.452 (3)	C25—C33	1.497 (6)
N1—C5	1.395 (3)	C25—C37	1.516 (5)
N1—C6	1.396 (3)	C25—C29	1.556 (5)
N1—C7	1.429 (3)	C27—C30	1.373 (5)
C5—C16	1.390 (4)	С27—Н27А	0.9300
C5—C12	1.415 (4)	C28—H28A	0.9600
C6—C17	1.389 (3)	C28—H28B	0.9600
C7—C18	1.382 (4)	C28—H28C	0.9600

C7—C15	1.383 (4)	C29—C36	1.505 (6)
C8—C13	1.392 (4)	C29—C34	1.517 (6)
C8—C11	1.404 (4)	С30—Н30А	0.9300
C8—B1	1.550 (4)	C31—H31A	0.9600
C9—C10	1.399 (4)	C31—H31B	0.9600
C9—C14	1.412 (4)	C31—H31C	0.9600
С9—В2	1.550 (4)	C32—H32A	0.9600
C10—C12	1.391 (4)	С32—Н32В	0.9600
C10—H10A	0.9300	С32—Н32С	0.9600
C11—C17	1.383 (4)	С33—Н33А	0.9600
C11—H11A	0.9300	С33—Н33В	0.9600
C13—H13A	0.9300	С33—Н33С	0.9600
C14—C16	1.379 (4)	C34—H34A	0.9600
C14—H14A	0.9300	C34—H34B	0.9600
C15—C30	1.384 (4)	C34—H34C	0.9600
C15—H15A	0.9300	C35—H35A	0.9600
C16—H16A	0.9300	С35—Н35В	0.9600
C17—H17A	0.9300	С35—Н35С	0.9600
C18—C22	1.376 (4)	C36—H36A	0.9600
C18—H18A	0.9300	С36—Н36В	0.9600
C19—C28	1.508 (4)	С36—Н36С	0.9600
C19—C31	1.519 (5)	C37—H37A	0.9600
C19—C21	1.559 (5)	С37—Н37В	0.9600
O3—B2	1.343 (5)	С37—Н37С	0.9600
O3—C29	1.445 (4)		
B1	107.0 (2)	O4—C25—C33	107.6 (4)
B1—O2—C21	107.6 (2)	O4—C25—C37	106.2 (3)
C13—C3—C6	119.2 (2)	C33—C25—C37	109.2 (4)
C13—C3—C12	133.8 (2)	O4—C25—C29	103.1 (2)
C6—C3—C12	107.0 (2)	C33—C25—C29	115.2 (3)
C5—N1—C6	108.4 (2)	C37—C25—C29	114.7 (4)
C5—N1—C7	126.1 (2)	O4—B2—O3	113.0 (3)
C6—N1—C7	125.3 (2)	O4—B2—C9	123.9 (3)
C16—C5—N1	129.1 (2)	O3—B2—C9	123.1 (3)
C16—C5—C12	121.8 (2)	C22—C27—C30	119.6 (3)
N1—C5—C12	109.0 (2)	С22—С27—Н27А	120.2
C17—C6—N1	129.1 (2)	С30—С27—Н27А	120.2
C17—C6—C3	121.8 (2)	C19—C28—H28A	109.5
N1—C6—C3	109.0 (2)	C19—C28—H28B	109.5
C18—C7—C15	119.6 (3)	H28A—C28—H28B	109.5
C18—C7—N1	120.3 (2)	C19—C28—H28C	109.5
C15—C7—N1	120.1 (2)	H28A—C28—H28C	109.5
C13—C8—C11	118.4 (2)	H28B—C28—H28C	109.5
C13—C8—B1	120.9 (3)	O3—C29—C36	107.8 (3)
C11—C8—B1	120.6 (2)	O3—C29—C34	105.7 (4)
C10—C9—C14	118.2 (2)	C36—C29—C34	108.2 (4)
С10—С9—В2	120.7 (3)	O3—C29—C25	103.4 (2)
С14—С9—В2	121.1 (3)	C36—C29—C25	115.6 (3)
C12—C10—C9	120.6 (3)	C34—C29—C25	115.3 (3)

C12-C10-H10A	119.7	C27—C30—C15	120.5 (3)
C9—C10—H10A	119.7	С27—С30—Н30А	119.7
C17—C11—C8	123.1 (2)	С15—С30—Н30А	119.7
C17—C11—H11A	118.4	С19—С31—Н31А	109.5
C8—C11—H11A	118.4	С19—С31—Н31В	109.5
C10-C12-C5	119.0 (2)	H31A—C31—H31B	109.5
C10-C12-C3	134.5 (2)	С19—С31—Н31С	109.5
C5—C12—C3	106.5 (2)	H31A—C31—H31C	109.5
C8—C13—C3	120.3 (2)	H31B—C31—H31C	109.5
C8—C13—H13A	119.9	С21—С32—Н32А	109.5
С3—С13—Н13А	119.9	С21—С32—Н32В	109.5
C16—C14—C9	122.9 (3)	H32A—C32—H32B	109.5
C16—C14—H14A	118.6	С21—С32—Н32С	109.5
C9—C14—H14A	118.6	H32A—C32—H32C	109.5
C7—C15—C30	119.5 (3)	H32B—C32—H32C	109.5
C7—C15—H15A	120.2	С25—С33—Н33А	109.5
C30-C15-H15A	120.2	С25—С33—Н33В	109.5
C14—C16—C5	117.5 (3)	H33A—C33—H33B	109.5
C14—C16—H16A	121.2	С25—С33—Н33С	109.5
C5—C16—H16A	121.2	H33A—C33—H33C	109.5
C11—C17—C6	117.2 (3)	H33B—C33—H33C	109.5
С11—С17—Н17А	121.4	C29—C34—H34A	109.5
C6—C17—H17A	121.4	С29—С34—Н34В	109.5
C22—C18—C7	119.8 (3)	H34A—C34—H34B	109.5
C22-C18-H18A	120.1	С29—С34—Н34С	109.5
C7—C18—H18A	120.1	H34A—C34—H34C	109.5
O1—C19—C28	108.5 (3)	H34B—C34—H34C	109.5
O1—C19—C31	106.0 (3)	С21—С35—Н35А	109.5
C28—C19—C31	110.7 (3)	С21—С35—Н35В	109.5
O1—C19—C21	102.2 (2)	H35A—C35—H35B	109.5
C28—C19—C21	115.7 (3)	С21—С35—Н35С	109.5
C31—C19—C21	112.9 (3)	H35A—C35—H35C	109.5
B2—O3—C29	109.7 (3)	H35B—C35—H35C	109.5
O2—C21—C32	107.4 (2)	С29—С36—Н36А	109.5
O2—C21—C35	106.2 (3)	С29—С36—Н36В	109.5
C32—C21—C35	111.1 (3)	H36A—C36—H36B	109.5
O2—C21—C19	102.5 (2)	С29—С36—Н36С	109.5
C32—C21—C19	116.1 (3)	H36A—C36—H36C	109.5
C35—C21—C19	112.5 (3)	H36B—C36—H36C	109.5
C27—C22—C18	121.0 (3)	С25—С37—Н37А	109.5
C27—C22—H22A	119.5	С25—С37—Н37В	109.5
C18—C22—H22A	119.5	Н37А—С37—Н37В	109.5
O2—B1—O1	113.3 (3)	С25—С37—Н37С	109.5
O2—B1—C8	123.5 (2)	Н37А—С37—Н37С	109.5
O1—B1—C8	123.2 (3)	Н37В—С37—Н37С	109.5
B2—O4—C25	109.8 (3)		
C6—N1—C5—C16	178.1 (3)	B1—O1—C19—C21	-23.4 (3)
C7—N1—C5—C16	-5.1 (5)	B1—O2—C21—C32	-143.9 (3)
C6—N1—C5—C12	1.1 (3)	B1—O2—C21—C35	97.0 (3)

C7—N1—C5—C12	177.9 (2)	B1—O2—C21—C19	-21.2(3)
C5—N1—C6—C17	178.7 (3)	01-C19-C21-O2	26.7 (3)
C7—N1—C6—C17	1.9 (4)	C28—C19—C21—O2	144.4 (3)
C5—N1—C6—C3	0.3 (3)	C31—C19—C21—O2	-86.7 (3)
C7—N1—C6—C3	-176.5 (2)	O1-C19-C21-C32	143.5 (3)
C13—C3—C6—C17	-2.2 (4)	C28—C19—C21—C32	-98.9 (4)
C12—C3—C6—C17	179.9 (2)	C31—C19—C21—C32	30.1 (4)
C13—C3—C6—N1	176.3 (2)	O1-C19-C21-C35	-87.0 (3)
C12—C3—C6—N1	-1.6 (3)	C28—C19—C21—C35	30.7 (4)
C5—N1—C7—C18	119.4 (3)	C31—C19—C21—C35	159.6 (3)
C6—N1—C7—C18	-64.3 (4)	C7—C18—C22—C27	0.7 (5)
C5—N1—C7—C15	-61.3 (4)	C21—O2—B1—O1	7.2 (3)
C6—N1—C7—C15	115.0 (3)	C21—O2—B1—C8	-174.5 (3)
C14—C9—C10—C12	0.1 (4)	C19—O1—B1—O2	11.4 (3)
B2C9C10C12	179.1 (3)	C19—O1—B1—C8	-166.9 (3)
C13—C8—C11—C17	-2.1 (4)	C13—C8—B1—O2	10.8 (4)
B1-C8-C11-C17	174.0 (3)	C11—C8—B1—O2	-165.2 (3)
C9—C10—C12—C5	1.0 (4)	C13—C8—B1—O1	-171.1 (3)
C9—C10—C12—C3	177.9 (3)	C11—C8—B1—O1	12.9 (4)
C16-C5-C12-C10	-1.6 (4)	B2-04-C25-C33	113.9 (4)
N1-C5-C12-C10	175.6 (2)	B2—O4—C25—C37	-129.2 (4)
C16—C5—C12—C3	-179.3 (3)	B2-04-C25-C29	-8.3 (4)
N1-C5-C12-C3	-2.1 (3)	C25—O4—B2—O3	3.3 (5)
C13—C3—C12—C10	7.6 (5)	C25—O4—B2—C9	-176.8 (4)
C6—C3—C12—C10	-174.9 (3)	C29—O3—B2—O4	3.8 (5)
C13—C3—C12—C5	-175.2 (3)	C29—O3—B2—C9	-176.1 (4)
C6—C3—C12—C5	2.2 (3)	C10—C9—B2—O4	-164.1 (4)
C11—C8—C13—C3	1.1 (4)	C14—C9—B2—O4	14.9 (6)
B1—C8—C13—C3	-174.9 (2)	С10—С9—В2—О3	15.8 (6)
C6—C3—C13—C8	0.9 (4)	C14—C9—B2—O3	-165.3 (4)
C12—C3—C13—C8	178.1 (3)	C18—C22—C27—C30	0.2 (5)
C10-C9-C14-C16	-0.7 (5)	B2—O3—C29—C36	-131.5 (4)
B2—C9—C14—C16	-179.7 (3)	B2—O3—C29—C34	113.0 (4)
C18—C7—C15—C30	0.6 (4)	B2—O3—C29—C25	-8.6 (4)
N1—C7—C15—C30	-178.7 (3)	O4—C25—C29—O3	9.9 (3)
C9—C14—C16—C5	0.1 (5)	C33—C25—C29—O3	-107.1 (4)
N1-C5-C16-C14	-175.6 (3)	C37—C25—C29—O3	124.8 (4)
C12-C5-C16-C14	1.0 (4)	O4—C25—C29—C36	127.5 (4)
C8—C11—C17—C6	0.8 (4)	C33—C25—C29—C36	10.5 (5)
N1—C6—C17—C11	-176.8 (3)	C37—C25—C29—C36	-117.6 (4)
C3—C6—C17—C11	1.4 (4)	O4—C25—C29—C34	-105.0 (4)
C15—C7—C18—C22	-1.1 (4)	C33—C25—C29—C34	138.0 (5)
N1—C7—C18—C22	178.1 (3)	C37—C25—C29—C34	9.9 (5)
B1—O1—C19—C28	-146.1 (3)	C22—C27—C30—C15	-0.7 (5)
B1-01-C19-C31	95.0 (3)	C7—C15—C30—C27	0.4 (5)

